

Datenblatt

LWL-Interface RS232 1Kanal

RS232 1Kanal Half-Party-Line/Pkt. zu Pkt. Verbindung

1 Allgemeine Beschreibung

Dieses Gerät ist ein kompaktes, robustes, für den Einsatz in industrieller Umgebung geeignetes Modem zur Übertragung von einem asynchronen RS232 Datenkanal im 'Voll-Duplex' Betrieb. Je nach verwendetem Lichtwellenleiter können zwischen zwei Teilnehmern Übertragungsstrecken bis zu 3000m realisiert werden.

In Verbindung mit RS232 Party-Line 1Kanal Modems läßt sich ein störsicheres RS232 Bussystem auf LWL-Basis realisieren. Nähere Erläuterungen zum Party-Line Prinzip finden Sie in der technischen Beschreibung "LWL-Party-Line Bussystem" (Dok. Nr.: A01 0001).

2 Anwendungen___

Aufgrund der hohen Datenübertragungsrate von max. 120 kBit/s, den max. Übertragungsdistanzen von 3000m zwischen 2 Teilnehmern und der Protokoll-Transparenz, findet das Modem eine Vielzahl von Anwendungsmöglichkeiten:

- Bestehende elektrische RS232 Verbindungen lassen sich über größere Distanzen störsicher erweitern.
- -Störsichere Datenübertragung unter schwierigen Umgebungsbedingungen.
- -Galvanische Trennung von Teilbereichen eines RS232-Bussystems.

3 Eigenschaften_

Bild 1 Interfaces

- -1Kanal RS232 LWL Transceiver
- -Voll-Duplex Datenübertragung
- -Unidirektionale RS232-Schnittstelle
- -120 kBit Datenübertragungsrate
- Voll Protokoll-Transparent
- 'Power-Good' Anzeige
- 'Receive-Data' Anzeige
- -RS232 Schnittstelle mit 25-pol. Sub-D Stift
- -F-SMA, F-ST oder andere genormte optische Anschlüsse
- -Aluminiumgehäuse (optional mit Rastclip für 35mm Hutprofilschiene)
- -+5V oder 9 .. 30V DC Spannungsversorgung

Bild 1 Interfaces

4 Bestellinformation

Bestellnummer
901 RS 232 1K 551
901 RS 232 1K 550
901 RS 232 1K 549
901 RS 232 1K 548

5 Blockschaltbild

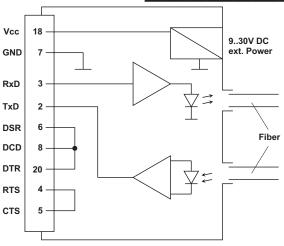


Bild 2 Schaltbild

RS232 1Kanal Half-Party-Line/Pkt. zu Pkt. Verbindung

6 Optionen _

Auf Anfrage ist das Modem optional in folgenden Ausführungen lieferbar:

- -mit Rastelement für Montage auf 35mm Hutprofilschiene.
- -mit invertiertem opt. Signal (s. 8 Arbeitsweise)
- -für F-ST, F-SMA oder andere gängige opt. Steckverbinder.
- -Kunststoffgehäuse, metallisiert.

7 CE-Konformitätserklärung

Das RS232 1Kanal DLP Modem erfüllt die grundlegenden Anforderungen gemäß Artikel 4 und Anhang III der Richtlinie 89/336/EWG: Elektromagnetische Verträglichkeit (EMV). Die Übereinstimmung dieses Produkts mit den Vorschriften o.g. Richtlinie wird nachgewiesen durch die vollständige Einhaltung folgender Normen:

- EN 55022 bzw. EN 50081-1
- EN 55024 bzw. EN 50082-1
- EN 50082-2 (Industriebereich)

8 Arbeitsweise __

Das RS232 1Kanal LWL-Modem ist ein Codetransparenter elektro-optischer Wandler. An der RS232-Schnittstelle ankommende Daten werden in optische Signale umgewandelt und vom angeschlossenen Lichtwellenleiter übertragen. Der optische Empfänger generiert aus den ankommenden optischen Signalen das entsprechende RS232 Datenformat.

Das RS232-Format wird nach folgender Regel in optische Signale umgesetzt:

$$U_{IN} \ge +3V = '0'$$
 \Rightarrow opt. Out=Ein $U_{IN} \le -3V = '1'$ \Rightarrow opt. Out=Aus

Für Anwendungen bei denen die Zuordnung der optischen Pegel zu den Zuständen der RS232 Pegel invertiert sein muß, stehen entsprechende RS232 Modems zur Verfügung (Option).

9 Spannungsversorgung

Das Modem bietet 2 Möglichkeiten der Spannungsversorgung:

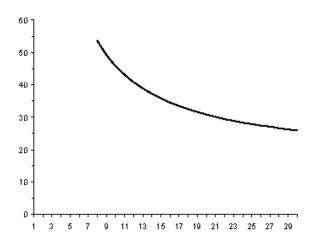
A) +5V DC ±5% an Pin 18 Sub-D

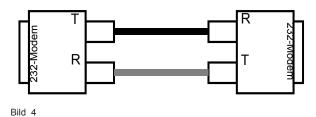
Die Schraubklemme darf nicht belegt werden.

B) +9V...+30V DC (ungeregelt) an Schraubklemme

Ein Schaltregler erzeugt die +5V Versorgungsspannung für die Elektronik des Modems. Pin 18 ist ein +5V Ausgang, der mit max. 50mA belastet werden kann.

In Bild 3 ist die Stromaufnahme des Modems in Abhängigkeit von der Versorgungsspannung für B) dargestellt.




Bild 3 Kennlinier

RS232 1Kanal Half-Party-Line/Pkt. zu Pkt. Verbindung

10 Inbetriebnahme___

- -Stellen Sie die Geräte an geeigneter Stelle auf.
- -Verbinden Sie die Geräte mit den Teilnehmern.
- -Stellen Sie sicher das alle zu verbindenden Geräte spannungslos sind. Dies vermeidet mögliche Schäden während der Verdrahtung.
- -Verbinden Sie mit dem konfektionierten LWL-Kabel die optischen Schnittstellen der Geräte nach dem Anschlußschema in Bild 4.
- -Prüfen Sie alle Verbindungen auf ihre richtige Anschlußbelegung.
- -Schließen Sie die Teilnehmer an ihre Spannungsversorgung an.

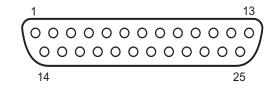
Beispiel 2: Pinbelegung 25pol. Sub-D

Pin	Name	DCE	DTE
1	CG	Erde	Erde
2	TxD	Eingang	Ausgang
3	RxD	Ausgang	Eingang
4	RTS	Eingang	Ausgang
5	CTS	Ausgang	Eingang
6	DSR	Ausgang	Eingang
7	GND	Masse	Masse
8	DCD	Ausgang	Eingang
12	DCD2	Ausgang	Eingang
13	CTS2	Ausgang	Eingang
14	TXD2	Eingang	Ausgang
15	TxC	Ausgang	Eingang
16	RxD2	Ausgang	Eingang
17	RxC	Ausgang	Eingang
19	RTS2	Eingang	Ausgang
20	DTR	Eingang	Ausgang
22	RI	Ausgang	Eingang
23	DRS	A/E	A/E
24	TxC	Eingang	Ausgang
25	BUSY	Ausgang	Eingang

11 RS232

Die vollständige Pinbelegung der RS232 Schnittstelle und die Bedeutung der Signale sind in der EIA RS232-C Norm beschrieben.

Vereinbarungsgemäß gibt es Geräte die als DTE (Data Terminal Equipment z.B. Computer) und DCE (Data Communication Equipment z.B. Modem) bezeichnet werden.


In der Norm ist der 25pol. Sub-D festgelegt, wobei sich auch die 9pol. Sub-D Ausführung etabliert hat.

DCE = Sub-D Buchse DTE = Sub-D Stift

Beispiel 1: Pinbelegung 9pol. Sub-D

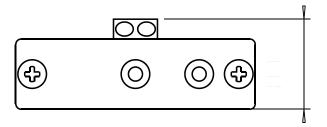
Pin	Name	DCE	DTE
1	DCD	Ausgang	Eingang
2	RxD	Ausgang	Eingang
3	TxD	Eingang	Ausgang
4	DTR	Eingang	Ausgang
5	GND	Masse	Masse
6	DSR	Ausgang	Eingang
7	RTS	Eingang	Ausgang
8	CTS	Ausgang	Eingang
9	RI	Ausgang	Eingang

12 Sub-D Pinbelegung ____

PIN Nr.	Name	Funktion
2	TxD	Data OUT
3	RxD	Data IN
4	RTS	Brücke auf CTS
5	CTS	Brücke auf RTS
6	DSR	Brücke auf DCD, DTR
7	GND	Bezugspotenzial
8	DCD	Brücke auf DSR, DTR
18	Vcc	+5V DC Input/Output
20	DTR	Brücke auf DSR, DCD

[!] Nicht aufgeführte Pins sind ohne Funktion und sollten nicht belegt werden. !

01/14


Rev. A01 Electronics | OptoElectronics

RS232 1Kanal Half-Party-Line/Pkt. zu Pkt. Verbindung

13 Grenzwerte ____ Spannungsversorgung +V +35V DC Spannungsversorgung 5V DC _____ +5.5V DC Lagertemperatur _____ -55..+125°C Betriebstemperatur _____ -40..+85°C

Belastungen die über die als 'Grenzwerte' angegebenen hinausgehen können das Modem dauerhaft beschädigen. Die Grenzwerte stellen Belastungsgrenzen des Modems dar. Der dauerhafte Betrieb des Modems mit diesen Werten wird nicht Empfohlen, da die Zuverlässigkeit des Gerätes darunter leiden kann.

15 Maßzeichnung

14 Technische Daten_

Datenrate: 0 .. 120 kBit/s Bitverzerrung: ± 200ns

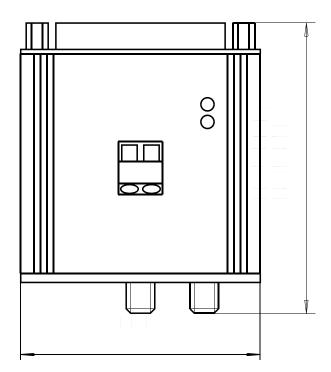
max. opt. P_{оит}: 100μW / 200/230μm

27μW / 50/125μm 60μW / 62,5/125μm 700µW /980/1000µm

min. opt. P_{IN}: ca. 2µW Wellenlängen: 660nm, 850nm opt. Anschluß: F-ST, F-SMA max. Reichweite: 3000m **GI-Faser**

2000m **HCS-Faser PO-Faser** 70m

Datenformat el.: RS232-C / V24 el. Anschluß: 25-pol. Sub-D Stift Betriebsspannung: +5V DC ±5% über Sub-D


oder 9 .. 30V DC über Schraubklemmen

Stromaufnahme: 70mA (±10%) / 5V LED Anzeigen:

grün = Vcc

gelb = RxD (Datenempfang) Gehäuse: Aluminiumstrangpressprofil Abmessungen: ca. 72x55x20mm (LxBxH)

Schutzart: **IP40** Gewicht: ca. 100g Temperaturbereich: -40 .. +80°C

Alle Informationen in den Datenblättern von Ratioplast-Optoelectronics GmbH wurden nach besten Wissen und Gewissen erstellt. Sie werden regelmäßig kontrolliert und aktualisiert. Für eventuell noch vorhandene Irrtümer oder Fehler wird keine Haftung übernommen. Änderungen vorbehalten.