

Datenblatt

F-ST DIP-Gehäuse 660nm Empfänger

Photo-Empfänger 660nm, 5MBd

1 Allgemeine Beschreibung

Der Empfänger besteht aus einer Photodiode mit integriertem Transimpedanzverstärker und einer TTL kompatiblen 'open collector'-Ausgangsstufe. Der Empfänger ist vollständig 'DC'-gekoppelt und benötigt daher keine Kodierung des Eingangssignals. Der Empfänger ist speziell geeignet für Anwendungen mit Lichtwellenleitern bis zu einem Faserdurchmesser von 1mm.

2 Anwendungen

Aufgrund der Übertragungsrate bis 5MBd, den guten optischen und mechanischen Eigenschaften, findet das Bauelement eine Vielzahl von Anwendungsmöglichkeiten:

- · optische Netzwerke
- Industrieelektronik
- Leistungselektronik
- Lichtschranken

Bild 1 Photo-Empfänger mit Kunststoffgehäuse

- 660nm Photo-Empfänger
- open-collector Ausgang
- 5MBd
- F-ST Anschluß aus Metall
- Kunststoffgehäuse
- optional mit Stützstiften
- · geeignet für automatische Bestückung
- reflow-/ wellenlötfähig

3 Bestellinformation

Ausführung

660nm Empfänger ohne Stützstifte mit Stützstiften

Bestellnummer

905 EM 660 ST 001 905 EM 660 ST 002

5 Maßzeichnungen _____

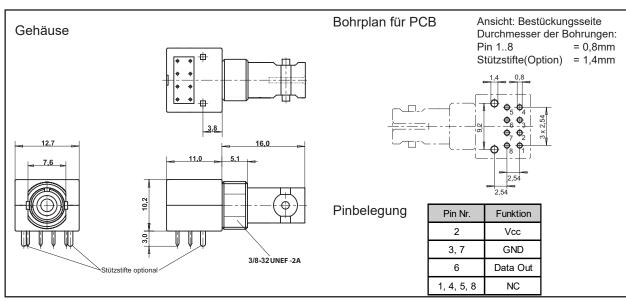


Bild 2 Abmessungen und Pinbelegung

Photo-Empfänger 660nm, 5MBd

6	Grenzwerte	
---	------------	--

Belastungen die über die als `Grenzwerte` angegebenen hinausgehen können das Bauelement dauerhaft beschädigen. Die Grenzwerte stellen Belastungsgrenzen des Bauelementes dar. Der dauerhafte Betrieb mit diesen Werten wird nicht empfohlen, da die Zuverlässigkeit des Bauelementes darunter leiden kann.

Parameter	Wert	Einheit		
Betriebstemperatur	-40 +85	•0		
Lagertemperatur	-40 +100	°C		
Löttemperatur 2mm vom Gehäuse, t ≤ 5s	260	°C		
Versorgungs-/Ausgangs- spannung	-0.5 bis 15	V		
Betriebsspannung für Funktion	≤ 4			
Pullup-Widerstand V _{cc} =5V	330	Ω		
Ausgangsstrom	50	mA		
Verlustleistung	100	mW		

7 Technische Daten _____

Parameter	Symbol	Bedingung	Min	Тур	Max	Einheit
Wellenlängen- bereich	λ _{80%}		600		780	nm
Schwerpunkt- wellenlänge	λ_{Smax}			700		nm
Übersteuerungs- grenze	P _{IN(max)}	λ=650nm	252	1000		\^/
Max. Empfindlichkeit	$P_{IN(L)}$	POF, λ=650nm	20	6.3		- μW
Laufzeit-	t _{PHL}	Eingabemuster 1010, 5MBd			120	ns
verzögerung	t _{PLH}				270	
Leerlaufspannung	V _{OH}	R=330Ω	V _{cc} -0.6	V _{cc} -0.3		V
Leenauispannung	$V_{\scriptscriptstyle OL}$			0.2	0.6	
Schaltzeiten 10%-90%	t _r	Eingabemuster 1010, 5MBd		14	30	- ns
90%-10%	t _f			4	15	
	I _{cc}	Eingabemuster 1010, 5MBd	8	14	20	
Stromverbrauch	I _{ccн}	Logisch 1, Licht aus	1.5	3.5	6.5	mA
	I _{CCL}	Logisch 0, Licht an	13	17.5	23	

Rev. A02 T05EM660ST001

Photo-Empfänger 660nm, 5MBd

Schaltungsbeispiel

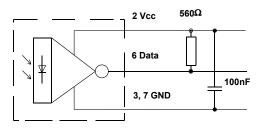


Bild 3 Schaltung Photo Empfänger 660nm

Hinweise:

- Vermeiden Sie Störsignale auf den Versorgungsleitungen.
- Platzieren Sie einen 100nF Entkoppelkondensator so nah wie möglich an den Empfänger.
- Halten Sie die Leiterbahnen für GND und Data so kurz wie möglich.
- Vermeiden Sie Fremdlichteinstreuung.
- Schützen Sie den Empfänger vor Verschmutzung.

Alle Informationen in den Datenblättern von Ratioplast-Optoelectronics GmbH wurden nach besten Wissen und Gewissen erstellt. Sie werden regelmäßig kontrolliert und aktualisiert. Für eventuell noch vorhandene Irrtümer oder Fehler wird keine Haftung übernommen. Änderungen vorbehalten.