

Datenblatt

F-SMA DIP-Gehäuse 850nm Empfänger

Photo-Empfänger 850nm

1 Allgemeine Beschreibung ___

Der Empfänger besteht aus einer Photodiode mit integriertem Transimpedanzverstärker und einer TTL kompatiblen 'open collector ' Ausgangsstufe. Der Empfänger ist vollständig 'DC'-gekoppelt und benötigt daher keine Kodierung des Eingangssignals. Der Empfänger ist speziell geeignet für Anwendungen mit Lichtwellenleitern mit einem Faserdurchmesser von 50µm bis 200µm.

2 Anwendungen_____

Aufgrund der guten optischen und mechanischen Eigenschaften findet das Bauelement eine Vielzahl von Anwendungsmöglichkeiten:

- optische Netzwerke
- Industrieelektronik
- Leistungselektronik
- Lichtschranken

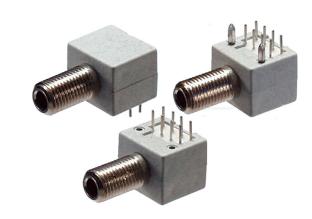


Bild 1 Optische Empfänger

4 Eigenschaften

- 850nm Photo-Empfänger
- · open-collector Ausgang
- 4µW Eingangsempfindlichkeit
- F-SMA Anschluß aus Metall
- Kunststoffgehäuse
- optional mit Stützstiften
- · geeignet für automatische Bestückung

= 1.4mm

· reflow-/ wellenlötfähig

3 Bestellinformation _

Ausführung

mit Stützstifte

Bestellnummer

850nm Empfänger F-SMA ohne Stützstifte mit Schrauben

905EM850SM007 905EM850SM0L7 905EM850SM008

5 Maßzeichnungen

Gehäuse

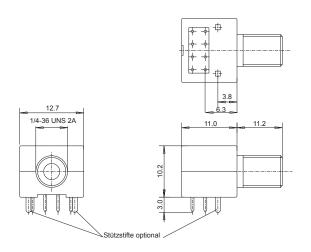


Bild 2 Bemaßungen und Pinbelegung

Ansicht: Bestückungsseite Bohrplan für PCB Durchmesser der Bohrungen:
Pin 1..8 = 0.8mm

PIN-Nr.	Funktion	
2	V _{cc}	
3, 7	GND	
6	Data Out	
1. 4. 5. 8	NC	

Stützstifte (optional)

Pinbelegung

Photo-Empfänger 850nm

6	Grenzwerte	(T _A =25°C)	
---	------------	------------------------	--

Belastungen die über die als `Grenzwerte` angegebenen hinausgehen können das Bauelement dauerhaft beschädigen. Die Grenzwerte stellen Belastungsgrenzen des Bauelementes dar. Der dauerhafte Betrieb mit diesen Werten wird nicht empfohlen, da die Zuverlässigkeit des Bauelementes darunter leiden kann.

Parameter	Wert	Einheit	
Betriebstemperatur	-40 + 85	°C	
Lagertemperatur	-55 +115	C	
Löttemperatur 2mm vom Gehäuse, t ≤ 10s	260	°C	
Versorgungsspannung	-0.5 bis 7.0	V	
Ausgangsspannung	-0.5 bis 18.0]	
Ausgangsstrom	25	mA	
Stromvertreilung (Open collector)	40	mW	

7 Technische Daten (T_A=25°C) _____

Parameter	Symbol	Bedingung	Min	Тур	Max	Einheit
Schwerpunkt- wellenlänge	$\lambda_{_{\mathrm{P}}}$			850		nm
Ausgangsstrom	I _{OH}	V _o = 18V, P _{oc} < -40 dBm		5	250	μA
Ausgangs- spannung	V _{OL}	I _o = 8 mA, P _{oc} > +24 dBm		0.2	0.5	V
Versorgungsstrom	I _{cch}	Output high $V_{CC} = 5.25 \text{ V}, P_{CC} < -40 \text{ dBm}$		3.5	6.3	- mA
	I _{CCL}	Output low $V_{CC} = 5.25 \text{ V}, P_{CC} < -24 \text{ dBm}$		6.9	10	
Peak input power level	P _{oc(H)}	Output high, λ _p =850nm			-40	dBm
		Guranteed output high, λ _p =850nm			0.1	μW
	$P_{oc(L)}$	Output low, λ _p =850nm, I _O =8mA	-25.4		-9.2	dBm
			2.9		120	μW
		(Guranteed output low) λ_p =850nm, I_o =8mA	-24		-10	dBm
		(Guranteed output low) -40°C ≤ TA ≤ +85°C	4.0		100	μW
Schaltzeiten	t _r , t _f	$P_{OC} = 20 \text{ dBm (peak)}, f = 2.5 \text{ MHz}$		30		
Laufzeit- verzögerung	t _{PDHL}	Output high to low, P_{oc} = 20 dBm (peak), f = 2.5 MHz		65		ns
	t _{PDLH}	Output low to high, P_{oc} = 20 dBm (peak), f = 2.5 MHz		100		
Pulsbreiten- verzerrung	PWD	P_{OC} = 20 dBm (peak), f = 2.5 MHz		± 30		%

Photo-Empfänger 850nm

8 Schaltungsbeispiel___

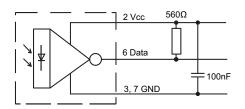


Bild 3 Schaltungsbeispiel

Hinweise:

- Vermeiden Sie Störsignale auf den Versorgungsleitungen.
- Platzieren Sie einen 100nF Entkoppelkondensator so nah wie möglich an den Empfänger.
- Halten Sie die Leiterbahnen für GND und Data so kurz wie möglich.
- Vermeiden Sie Fremdlichteinstreuung.
- Schützen Sie den Empfänger vor Verschmutzung.

Alle Informationen in den Datenblättern von Ratioplast-Optoelectronics GmbH wurden nach besten Wissen und Gewissen erstellt. Sie werden regelmäßig kontrolliert und aktualisiert. Für eventuell noch vorhandene Irrtümer oder Fehler wird keine Haftung übernommen. Änderungen vorbehalten.