

Datenblatt

Metall-Diodenträger 850nm Empfänger

Photo-Empfänger 850nm

1 Allgemeine Beschreibung

Der Empfänger besteht aus aus einer Photodiode mit integriertem Transimpedanzverstärker und einer TTL kompatiblen "open collector"-Ausgangsstufe. Der Empfänger ist vollständig "DC"-gekoppelt und benötigt daher keine Kodierung des Eingangssignals. Der Empfänger ist speziell geeignet für Anwendungen mit Lichtwellenleitern bis zu einem Faserdurchmesser von 200/230µm.

2 Anwendungen_____

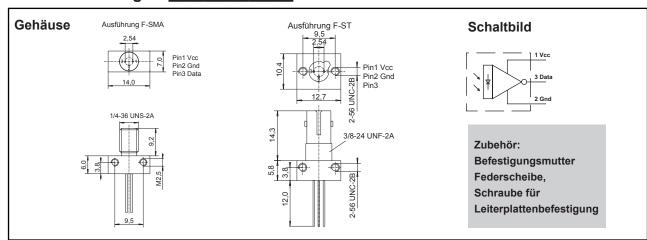
Aufgrund der guten optischen und mechanischen Eigenschaften, findet das Bauelement eine Vielzahl von Anwendungsmöglichkeiten:

- optische Netzwerke
- Industrieelektronik
- Leistungselektronik
- Lichtschranken

Bild 1 Sender F-SMA / F-ST

3 Bestellinformation _____

Ausführung


F-SMA 905 EM 850 SM 102
F-SMA mit Befestigungzubehör 905 EM 850 SM 1Z2
F-ST 905 EM 850 ST 102
F-ST mit Befestigungszubehör 905 EM 850 ST 1Z2

Bestellnummer

4 Eigenschaften_

- 850nm Photoempfänger
- "open-collector"-Ausgang
- 4µW Eingangsempfindlichkeit
- F-SMA Anschluss
- F-ST Anschluss
- Metallgehäuse
- wellenlötfähig
- geeignet für Lichtwellenleiter von 50/125µm bis 200/230µm

5 Maßzeichnungen

Photo-Empfänger 850nm

6 (Grenzwerte	(T _A =25°C)	
-----	------------	------------------------	--

Belastungen die über die als `Grenzwerte` angegebenen hinausgehen können das Bauelement dauerhaft beschädigen. Die Grenzwerte stellen Belastungsgrenzen des Bauelementes dar. Der dauerhafte Betrieb mit diesen Werten wird nicht empfohlen, da die Zuverlässigkeit des Bauelementes darunter leiden kann.

Parameter	Wert	Einheit	
Betriebstemperatur	-40 + 85	°C	
Lagertemperatur	-55 +115	C	
Löttemperatur 2mm vom Gehäuse, t ≤ 10s	260	°C	
Versorgungsspannung	-0.5 bis 7.0	V	
Ausgangsspannung	-0.5 bis 18.0	V	
Ausgangsstrom	25	mA	
Stromvertreilung (Open collector)	40	mW	

7 Technische Daten (T_A=25°C) _____

Parameter	Symbol	Bedingung	Min	Тур	Max	Einheit
Schwerpunkt- wellenlänge	$\lambda_{_{\mathrm{P}}}$			850		nm
Ausgangsstrom	I _{OH}	V _o = 18V, P _{oc} < -40 dBm		5	250	μΑ
Ausgangs- spannung	V _{OL}	I _o = 8 mA, P _{oc} > +24 dBm		0.2	0.5	V
Voroorgungaatram	I _{CCH}	Output high $V_{CC} = 5.25 \text{ V}, P_{CC} < -40 \text{ dBm}$		3.5	6.3	- mA
Versorgungsstrom	I _{CCL}	Output low $V_{CC} = 5.25 \text{ V}, P_{CC} < -24 \text{ dBm}$		6.9	10	
	P _{oc(H)}	Output high, λ _p =850nm			-40	dBm
		Guranteed output high, λ _p =850nm			0.1	μW
De ala important a social la contra	P _{oc(L)}	Output low, λ _p =850nm, I _O =8mA	-25.4		-9.2	dBm
Peak input power level			2.9		120	μW
		(Guranteed output low) λ _p =850nm, I _o =8mA	-24		-10	dBm
		(Guranteed output low) -40°C ≤ TA ≤ +85°C	4.0		100	μW
Schaltzeiten	t _r , t _f	$P_{OC} = 20 \text{ dBm (peak)},$ f = 2.5 MHz		30		
Laufzeit-	t _{PDHL}	Output high to low, P_{oc} = 20 dBm (peak), f = 2.5 MHz		65		ns
verzögerung	t _{PDLH}	Output low to high, P_{oc} = 20 dBm (peak), f = 2.5 MHz		100		
Pulsbreiten- verzerrung	PWD	P_{OC} = 20 dBm (peak), f = 2.5 MHz		± 30		%

Photo-Empfänger 850nm

8 Schaltungsbeispiel

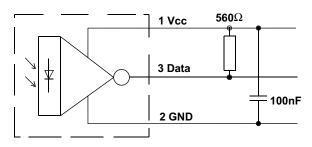


Bild 2 Schaltplan

Hinweise:

- Vermeiden Sie Störsignale auf den Versorgungsleitungen.
- Platzieren Sie einen 100nF Entkoppelkondensator so nah wie möglich an den Empfänger.
- Halten Sie die Leiterbahnen für GND und Data so kurz wie möglich.
- Vermeiden Sie Fremdlichteinstreuung
- Schützen Sie den Empfänger vor Verschmutzung

9 Pulsverzerrung

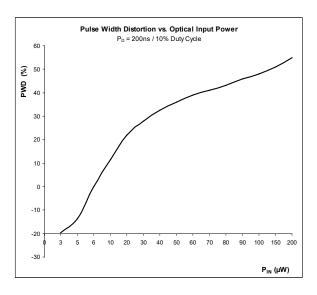


Bild 3 Kennlinie

Alle Informationen in den Datenblättern von Ratioplast-Optoelectronics GmbH wurden nach besten Wissen und Gewissen erstellt. Sie werden regelmäßig kontrolliert und aktualisiert. Für eventuell noch vorhandene Irrtümer oder Fehler wird keine Haftung übernommen. Änderungen vorbehalten.