

Electronics | OptoElectronics

Datenblatt

Metalldiodenträger 850nm Empfänger

Photo-Empfänger 850nm analog 125MHz

1 Allgemeine Beschreibung _

Der Empfänger besteht aus einer Photodiode mit integriertem Transimpedanzverstärker. Der Empfängerist speziell geeignet für Anwendungen mit hoher Signalbandbreite.

2 Anwendungen_

Aufgrund der Bandbreite von 125MHz, den guten optischen und mechanischen Eigenschaften, findet das Bauelement eine Vielzahl von Anwendungsmöglichkeiten:

- · optische Netzwerke
- Industrieelektronik
- Leistungselektronik

- **Emitterfolger Ausgang**
- Analoges Ausgangssignal
- 125MHz Bandbreite
- F-SMA Anschluß
- F-ST Anschluß
- Metallgehäuse
- wellenlötfähig

3/8-24 UNF-2A

geeignet für Lichtwellenleiter von 50/125µm bis 200/230µm

3 Bestellinformation _____

Ausführung

850nm analog Empfänger F-SMA

mit Befestigungszubehör F-ST

mit Befestigungszubehör

Bestellnummer

905EM850SM106 905EM850SM1Z6 905EM850ST106 905EM850ST1Z6

Maßzeichnungen

Gehäuse

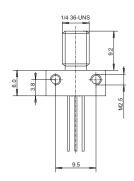
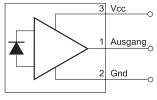



Bild 2 Bemaßungen und Pinbelegung

Schaltbild

Pinbelegung

PIN-Nr.	Funktion		
1	Ausgang		
2	GND		
3	V _{cc}		

Photo-Empfänger 850nm analog 125MHz

6 Grenzwerte

Belastungen die über die als `Grenzwerte` angegebenen hinausgehen können das Bauelement dauerhaft beschädigen. Die Grenzwerte stellen Belastungsgrenzen des Bauelementes dar. Der dauerhafte Betrieb mit diesen Werten wird nicht empfohlen, da die Zuverlässigkeit des Bauelementes darunter leiden kann.

Parameter	Symbol	Wert	Einheit	
Betriebsspannung	V _{cc} max0.5 bis 6.0		V	
Ausgangsspannung	V _{out} max.	-0.5 bis V _{cc}	V	
Ausgangsstrom	I _{out}	25	mA	
Löttemperatur t ≤ 10s	T _{soL}	260	°C	
Betriebstemperatur	T _{OPR}	-40 bis +85	°C	
Lagertemperatur	T _{stg}	-55 bis +85	°C	

7 Technische Daten_____

Parameter	Symbol	Bedingung	Min	Тур	Max	Einheit
Betriebsspannung	V _{cc}		4.75	5	5.45	V
Bandbreite	$f_{_{\mathrm{D}}}$		-	125	-	MHz
Stromaufnahme	I _{cc}	R _{LOAD} = ∞	-	9	15	mA
Eingangsempfindlich- keit	R _p	$\lambda = 840$ nm, 50MHz -40°C < T _A < +85°C	4.5	-	11.5	mV/μW
max. Eingangsleistung	P_{R}	-40°C < T _A < +85°C	-	-	150	μW
Pulsverzerrung	PWD	$P_R = 150\mu W$ $t_{PULS} = 10 \text{ ns}$ 50% Tastverhältnis	-	0.4-	2.5	ns
Schaltzeiten	t, t,	$R_L = 100 \mu W$ $R_L = 510 \mu W$ $C_L = 5 p F$	-	3.3 3.3	6.3 6.3	ns ns

8 Schaltungsbeispiel

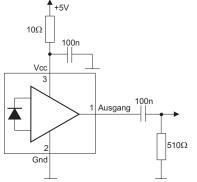


Bild 3 Schaltungsbeispiel

Hinweise:

- Vermeiden Sie Störsignale auf den Versorgungsleitungen.
- Platzieren Sie einen 100nF Entkoppelkondensator so nah wie möglich an den Empfänger.
- Halten Sie die Leiterbahnen für GND und Data so kurz wie möglich.
- · Vermeiden Sie Fremdlichteinstreuung.
- Schützen Sie den Empfänger vor Verschmutzung.

Alle Informationen in den Datenblättern von Ratioplast-Optoelectronics GmbH wurden nach besten Wissen und Gewissen erstellt. Sie werden regelmäßig kontrolliert und aktualisiert. Für eventuell noch vorhandene Irrtümer oder Fehler wird keine Haftung übernommen. Änderungen vorbehalten.

Hausanschrift: Jockweg 64 D 32312 Lübbecke Tel. +49 (0)5741 23665-0 Fax +49 (0)5741 23665-44 Internet: http://www.ratioplast.de E-Mail: opto@ratioplast.de USt.-ID-Nr.: DE 164 216 351 Amtsgericht Bad Oeynhausen HRB 2382