

Datenblatt F-SMA DIP-Gehäuse IP65 400...1100nm Empfänger

PIN Photodiode 400...1100nm

1 Allgemeine Beschreibung ___

Das Bauelement ist speziell geeignet für Anwendungen mit Lichtwellenleitern bis zu einem Faserdurchmesser von 1mm. Mit einem geeigneten F-SMA Steckverbinder läßt sich eine IP-65 dichte Steckverbindung realisieren. Bestückt mit einer schnellen Silizium PIN-Diode die über kurze Schaltzeiten und eine spektrale Bandbreite von 400nm bis 1100nm verfügt, ist das Bauelement eine gute Alternative in Datenübertragungssystemen mit Lichtwellenleitern.

Aufgrund der kurzen Schaltzeiten (≤ 5ns), den guten optischen und mechanischen Eigenschaften, findet das Bauelement eine Vielzahl von Anwendungsmöglichkeiten:

- optische Netzwerke
- Industrieelektronik
- Leistungselektronik
- Lichtschranken

Bild 1

5 Eigenschaften

- 400...1100nm PIN-Photodiode
- tr. tf ≤ 5ns
- F-SMA Anschluß aus Metall IP65
- auf Leiterplatte verschraubbar, mittels Blechschraube direkt in Metalldiodenträger
- Kunststoffgehäuse
- · geeignet für automatische Bestückung
- wellenlötfähig

3 Bestellinformation

Ausführung

Bestellnummer

400...1100nm IP-65 Empfänger incl. Schrauben PCB-Befestigung ohne Schrauben

905EMPINSM301 905EMPINSM302

4 Maßzeichnungen _____

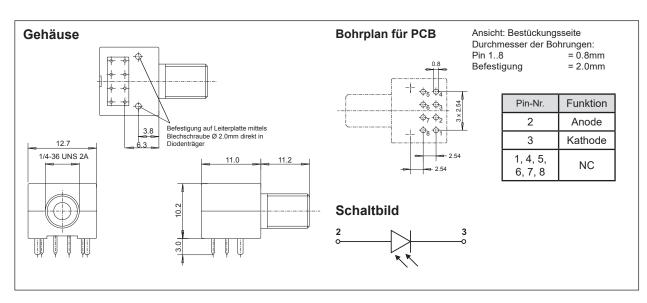


Bild 2

PIN Photodiode 400...1100nm

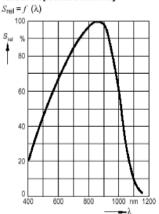
6 Grenzwerte (T _x =25°C)	
-------------------------------------	--

Belastungen die über die als `Grenzwerte` angegebenen hinausgehen können das Bauelement dauerhaft beschädigen. Die Grenzwerte stellen Belastungsgrenzen des Bauelementes dar. Der dauerhafte Betrieb mit diesen Werten wird nicht empfohlen, da die Zuverlässigkeit des Bauelementes darunter leiden kann.

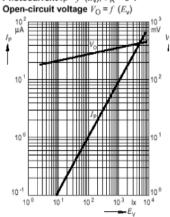
Parameter	Wert	Einheit		
Betriebstemperatur	-40 +100	°C		
Lagertemperatur	-4 0 +100	C		
Löttemperatur: 1.) 2mm vom Gehäuse, t ≤ 10s; 2.) max. 10s bei max. 5s Kontaktzeit pro Welle	260	°C		
Sperrspannung	20	V		
	50 bei t≤2min	V		
Verlustleistung	150	mW		
ESD Stehspannung	2	kV		

7 Technische Daten (T_A=25°C) _____

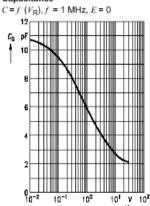

Parameter	Symbol	Bedingung	Min	Тур	Max	Einheit
Wellenlängen- bereich	λ _{10%}		400		1100	nm
Schwerpunkt- wellenlänge	$\lambda_{_{Smax}}$			850		- nm
Halböffnungs- winkel	φ			75		°deg.
Dunkelstrom	I _R	V _R =20V		1	5	nA
Spektral- empfindlichkeit	S _A	λ=850nm		0.62		A/W
Leerlaufspannung	V _o	E _v =1000lx; Std. Light A	300	350		mV
Kurzschlussstrom	I _{sc}	E _√ =1000lx; Std. Light A		9.3		μA
Schaltzeiten	t _r	VR = 20 V; RL = 50 Ω; λ = 850 nm		0.005		μs
Durchlass- spannung	V _F	IF = 100 mA; E = 0		1.3		V
Kapazität	C _o	VR = 0 V; f = 1 MHz; E = 0		11		pF
Temperatur- koeffizient	TC _v	Voltage		-2.6		mV/K
	TC,	Short-circuit current Std. Light A		0.18		%/K


Electronics | OptoElectronics

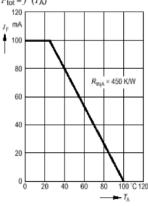
Ratioplast


PIN Photodiode 400...1100nm

Kennlinien



Photocurrent $I_P = f(E_v)$, $V_R = 5 \text{ V}$



Capacitance

Total power dissipation

Alle Informationen in den Datenblättern von Ratioplast-Optoelectronics GmbH wurden nach besten Wissen und Gewissen erstellt. Sie werden regelmäßig kontrolliert und aktualisiert. Für eventuell noch vorhandene Irrtümer oder Fehler wird keine Haftung übernommen. Änderungen vorbehalten.