

Datenblatt F-ST DIP-Gehäuse 400...1100nm Empfänger

PIN Photodiode 400...1100nm

1 Allgemeine Beschreibung ____

Das Bauelement ist speziell geeignet für Anwendungen mit Lichtwellenleitern bis zu einem Faserdurchmesser von 1mm. Bestückt mit einer schnellen Silizium PIN-Diode die über kurze Schaltzeiten und eine spektrale Bandbreite von 400nm bis 1100nm verfügt, ist das Bauelement eine gute Alternative in Datenübertragungssystemen mit Lichtwellenleitern.

2 Anwendungen_____

Aufgrund der kurzen Schaltzeiten (≤ 5ns), den guten optischen und mechanischen Eigenschaften, findet das Bauelement eine Vielzahl von Anwendungsmöglichkeiten:

- optische Netzwerke
- Industrieelektronik
- Leistungselektronik
- Lichtschranken

Ausführung

Bestellnummer

400..1100nm Empfänger F-SMA ohne Stützstifte mit Stützstiften

905EMPINST001 905EMPINST002

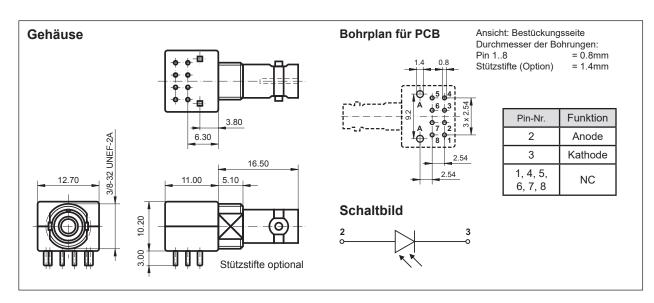


Bild 1

4 Eigenschaften

- 400...1100nm PIN-Photodiode
- tr. tf ≤ 5ns
- F-ST Anschluß aus Metall
- Kunststoffgehäuse
- optional mit Stützstiften
- geeignet für automatische Bestückung
- wellenlötfähig

5 Maßzeichnungen

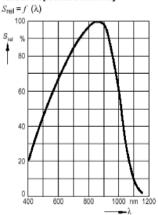
PIN Photodiode 400...1100nm

6 Grenzwerte (T_A=25°C)_____

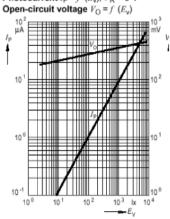
Belastungen die über die als `Grenzwerte` angegebenen hinausgehen können das Bauelement dauerhaft beschädigen. Die Grenzwerte stellen Belastungsgrenzen des Bauelementes dar. Der dauerhafte Betrieb mit diesen Werten wird nicht empfohlen, da die Zuverlässigkeit des Bauelementes darunter leiden kann.

Parameter	Wert	Einheit		
Betriebstemperatur	-40 +100	°C		
Lagertemperatur	-4 0 +100	<u> </u>		
Löttemperatur: 1.) 2mm vom Gehäuse, t ≤ 10s; 2.) max. 10s bei max. 5s Kontaktzeit pro Welle	260	°C		
Sperrspannung	20	V		
	50 bei t≤2min	V		
Verlustleistung	150	mW		
ESD Stehspannung	2	kV		

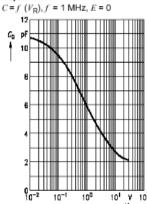
7 Technische Daten (T_A=25°C)


Parameter	Symbol	Bedingung	Min	Тур	Max	Einheit
Wellenlängen- bereich	λ _{10%}		400		1100	nm
Schwerpunkt- wellenlänge	$\lambda_{\sf Smax}$			850		- nm
Halböffnungs- winkel	φ			75		°deg.
Dunkelstrom	I _R	V _R =20V		1	5	nA
Spektral- empfindlichkeit	S _A	λ=850nm		0.62		A/W
Leerlaufspannung	V_{o}	E _v =1000lx; Std. Light A	300	350		mV
Kurzschlussstrom	I _{sc}	E _v =1000lx; Std. Light A		9.3		μA
Schaltzeiten	t _r	VR = 20 V; RL = 50 Ω;		0.005		- µs
	t _f	λ = 850 nm				
Durchlass- spannung	V_{F}	IF = 100 mA; E = 0		1.3		V
Kapazität	C_{o}	VR = 0 V; f = 1 MHz; E = 0		11		pF
Temperatur- koeffizient	TC _v	Voltage		-2.6		mV/K
	TC,	Short-circuit current Std. Light A		0.18		%/K

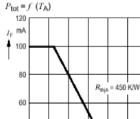
Ratioplast


PIN Photodiode 400...1100nm

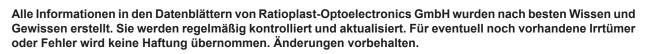
8 Kennlinien



Photocurrent $I_P = f(E_V)$, $V_R = 5 \text{ V}$ Open-circuit voltage $V_C = f(E_V)$



Capacitance



Total power dissipation

20

40 60 80 100 --- T_A

