

Datenblatt Klemmsystemgehäuse 660nm Sender

LED 660nm

1 Allgemeine Beschreibung _____

Das Bauelement ist speziell geeignet für Anwendungen mit Standard 1mm Kunststofflichtwellenleiter. Bestückt mit einer schnellen 660nm LED, die über eine hohe optische Ausgangsleistung verfügt, ist das Bauelement eine gute Alternative in Datenübertragungssystemen mit Kunststofflichtwellenleiter.

2 Anwendungen

Aufgrund der guten optischen und mechanischen Eigenschaften findet das Bauelement eine Vielzahl von Anwendungsmöglichkeiten:

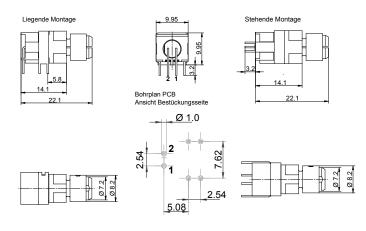
- optische Netzwerke
- Industrieelektronik
- Leistungselektronik
- Lichtschranken

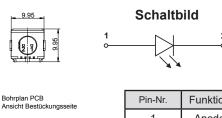
Bild 1 660nm Sender im Klemmgehäuse

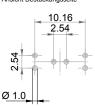
4 Eigenschaften____

- 660nm LED
- 300µW Ausgangsleistung bei 20mA
- 7MHz Grenzfrequenz
- steckerlose LWL-Konfektionierung
- geeignet für alle Kunststofflichtwellenleiter mit einem Außendurchmesser von 2,2mm und einem Faserdurchmesser von 1mm
- Schnellverriegelung mit Klemmring
- Kunststoffgehäuse
- · geeignet für automatische Bestückung
- wellenlötfähig

3 Bestellinformation _


Ausführung


Bestellnummer


660nm Sender liegend 660nm Sender stehend 905SE660KM006 905SE660KM007

5 Maßzeichnungen

Gehäuse

Pin-Nr. Funktion

1 Anode

2 Kathode

Bild 2 Zeichnung

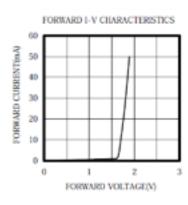
LED 660nm

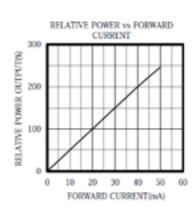
Belastungen die über die als `Grenzwerte` angegebenen hinausgehen können das Bauelement dauerhaft beschädigen. Die Grenzwerte stellen Belastungsgrenzen des Bauelementes dar. Der dauerhafte Betrieb mit diesen Werten wird nicht empfohlen, da die Zuverlässigkeit des Bauelementes darunter leiden kann.

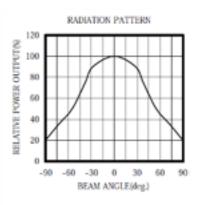
Parameter	Wert	Einheit	
Betriebstemperatur	-20 +80	°C	
Lagertemperatur	-30 +100	°C	
Sperrschichttemp.	100	°C	
Löttemperatur 3mm vom Gehäuse, t ≤ 5s	260	°C	
Sperrspannung	5	V	
Durchlaßstrom	50	mA	
Stoßstrom t _w ≤ 10µs, T=ms	500	mA	
Verlustleistung	120	mW	

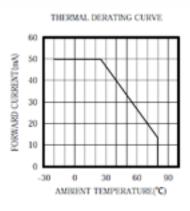
7 Technische Daten_____

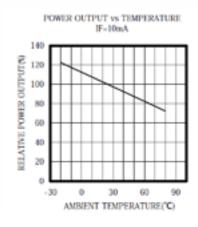
Parameter	Symbol	Bedingung	Min	Тур	Max	Einheit
Durchlaß- spannung	V _F	I _F = 20mA		1.8	2.2	V
Gesamt- strahlungsleistung	P _o	I _F = 20mA		5		mW
Sperrstrom	I _R	V _R = 5V			100	μA
Wellenlänge	$\lambda_{_{\mathrm{P}}}$	I _F = 20mA		660		nm
Halbwertsbreite	Δ_{λ}	I _F = 20mA		25		
Halbabtastwinkel	θ _{1/2}	I _F = 20mA		± 55		deg.
Schaltzeiten	t _r	I _{FP} = 20mA		30		ns
	t _f			30		
Sperrschicht- kapazität	CJ	1MHz, V=0V		20		pF
Temperatur- koeffizient	T _{POPT}	I _F = 10mA		-0.5		%/°C
	T _{VF}			-1.5		mV/°C

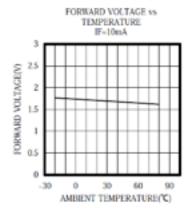


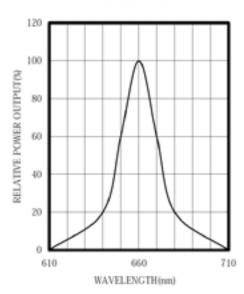





LED 660nm


9 Kennlinien _____





Alle Informationen in den Datenblättern von Ratioplast-Optoelectronics GmbH wurden nach besten Wissen und Gewissen erstellt. Sie werden regelmäßig kontrolliert und aktualisiert. Für eventuell noch vorhandene Irrtümer oder Fehler wird keine Haftung übernommen. Änderungen vorbehalten.