

Datenblatt

Metall-Diodenträger 660 nm Sender

LED 660 nm 10 Mhz

1. Allgemeine Beschreibung _____

Das Bauelement ist speziell geeignet für Anwendungen mit Standard 1mm Kunststofflichtwellenleiter. Bestückt mit einer schnellen 660 nm LED die über eine hohe optische Ausgangsleistung verfügt, ist das Bauelement eine gute Alternative in Datenübertragungssystemen mit Kunststofflichtwellenleiter.

2. Anwendungen _____

Aufgrund der hohen Modulationsfrequenz von max. 10 MHz, den guten optischen und mechanischen Eigenschaften, findet das Bauelement eine Vielzahl von Anwendungsmöglichkeiten:

- · optische Netzwerke
- Industrieelektronik
- Leistungselektronik
- Lichtschranken

Ausführung	Bestellnummer
F-SMA	905 SE 660 SM 102
F-SMA mit Zubehör	905 SE 660 SM 1Z2
F-ST	905 SE 660 ST 102
F-ST mit Zubehör	905 SE 660 ST 1Z2

Bild 1 F-ST, F-SMA Metall-Diodenträger

4. Eigenschaften _____

- 660 nm LED
- 200 µW Ausgangsleistung bei 10 mA
- 10 MHz Grenzfreguenz
- F-SMA Anschluß
- F-ST Anschluß
- geeignet für Kunststofflichtwellenleiter und PCF-Faser
- Metallgehäuse
- wellenlötfähig

5. Maßzeichnung ____

Gehäuse:

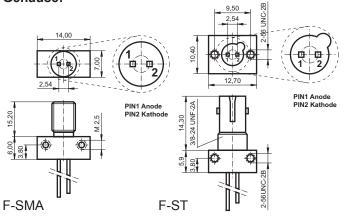
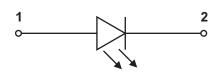



Bild 2 Zeichnung F-ST, F-SMA Metall-Diodenträger

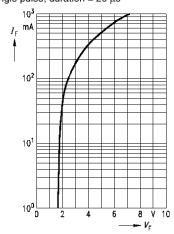
Schaltbild:

Zubehör: Befestigungsmutter, Federscheibe, Schrauben für Leiterplattenbefestigung

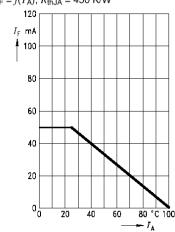
LED 660 nm 10 Mhz

6 Grenzwerte

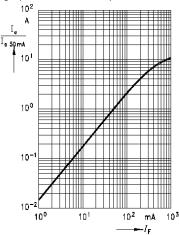
Belastungen die über die als `Grenzwerte` angegebenen hinausgehen können das Bauelement dauerhaft beschädigen. Die Grenzwerte stellen Belastungsgrenzen des Bauelementes dar. Der dauerhafte Betrieb mit diesen Werten wird nicht empfohlen, da die Zuverlässigkeit des Bauelementes darunter leiden kann.


Parameter	Value	Unit
Betriebstemperatur	-40 to +85	°C
Lagertemperatur	-40 to +100	°C
Sperrschichttemperatur	100	°C
Löttemperatur, 2mm vom Gehäuse, t ≤ 5s	260	°C
Sperrspannung	3	V
Durchlaßstrom	50	mA
Stoßstrom t ≤ 10µs, D=0	1	Α
Verlustleistung	120	mW
Wärmewiderstand	450	K/W

7 Technische Daten_


Parameter	Value	Unit
Wellenlänge λ	660	nm
Spektrale Bandbreite Δλ	25	nm
Schaltzeiten (I_F =50mA) t_R t_F	100 100	ns ns
Kapazität C _J (V _R =0V)	30	pF
Durchlaßspannung V _F (I _F =20mA)	2.1 (<2.8)	V
Ausgangsleistung P _{OUT} in 1mm Faser (I _F =10mA)	200 (>100)	μW
Temperaturkoeffizient P _{OUT}	-0.4	%/K
Temperaturkoeffizient V _F	-3	mV/K
Temperaturkoeffizient λ	0.16	nm/K

8 Kennlinien


Forward current $I_F = f(V_F)$, single pulse, duration = 20 µs

Maximum permissible forward current $I_{\rm F} = f(T_{\rm A}), R_{\rm th,JA} = 450 \ {\rm K/W}$

Relative output power $I_e/I_{e(50 \text{ mA})} = f(I_F)$ single pulse, duration = 20 μ s

Alle Informationen in den Datenblättern von Ratioplast-Optoelectronics GmbH wurden nach besten Wissen und Gewissen erstellt. Sie werden regelmäßig kontrolliert und aktualisiert. Für eventuell noch vorhandene Irrtümer oder Fehler wird keine Haftung übernommen. Änderungen vorbehalten.